Antisense transcript and RNA processing alterations suppress instability of polyadenylated mRNA in chlamydomonas chloroplasts.

نویسندگان

  • Yoshiki Nishimura
  • Elise A Kikis
  • Sara L Zimmer
  • Yutaka Komine
  • David B Stern
چکیده

In chloroplasts, the control of mRNA stability is of critical importance for proper regulation of gene expression. The Chlamydomonas reinhardtii strain Delta26pAtE is engineered such that the atpB mRNA terminates with an mRNA destabilizing polyadenylate tract, resulting in this strain being unable to conduct photosynthesis. A collection of photosynthetic revertants was obtained from Delta26pAtE, and gel blot hybridizations revealed RNA processing alterations in the majority of these suppressor of polyadenylation (spa) strains, resulting in a failure to expose the atpB mRNA 3' poly(A) tail. Two exceptions were spa19 and spa23, which maintained unusual heteroplasmic chloroplast genomes. One genome type, termed PS+, conferred photosynthetic competence by contributing to the stability of atpB mRNA; the other, termed PS-, was required for viability but could not produce stable atpB transcripts. Based on strand-specific RT-PCR, S1 nuclease protection, and RNA gel blots, evidence was obtained that the PS+ genome stabilizes atpB mRNA by generating an atpB antisense transcript, which attenuates the degradation of the polyadenylated form. The accumulation of double-stranded RNA was confirmed by insensitivity of atpB mRNA from PS+ genome-containing cells to S1 nuclease digestion. To obtain additional evidence for antisense RNA function in chloroplasts, we used strain Delta26, in which atpB mRNA is unstable because of the lack of a 3' stem-loop structure. In this context, when a 121-nucleotide segment of atpB antisense RNA was expressed from an ectopic site, an elevated accumulation of atpB mRNA resulted. Finally, when spa19 was placed in a genetic background in which expression of the chloroplast exoribonuclease polynucleotide phosphorylase was diminished, the PS+ genome and the antisense transcript were no longer required for photosynthesis. Taken together, our results suggest that antisense RNA in chloroplasts can protect otherwise unstable transcripts from 3'-->5' exonuclease activity, a phenomenon that may occur naturally in the symmetrically transcribed and densely packed chloroplast genome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small RNA profiling in Chlamydomonas: insights into chloroplast RNA metabolism

In Chlamydomonas reinhardtii, regulation of chloroplast gene expression is mainly post-transcriptional. It requires nucleus-encoded trans-acting protein factors for maturation/stabilization (M factors) or translation (T factors) of specific target mRNAs. We used long- and small-RNA sequencing to generate a detailed map of the transcriptome. Clusters of sRNAs marked the 5' end of all mature mRNA...

متن کامل

An mRNA 3' processing site targets downstream sequences for rapid degradation in Chlamydomonas chloroplasts.

In Chlamydomonas chloroplasts, atpB pre-mRNA matures through a two-step process. Initially, endonuclease cleavage occurs 8-10 nt downstream of the mature 3' end, which itself lies at the end of a stem-loop-forming inverted repeat (IR) sequence. This intermediate product is then trimmed by a 3' -->5' exonuclease activity. Although the initial endonucleolytic cleavage by definition generates two ...

متن کامل

Upregulation of HOTAIR Transcript Level in Tumor Tissue of Iranian Women with Breast Cancer

Background:Dysregulation of HOX Transcript Antisense Intergenic RNA (HOTAIR) has been linked to the etiopathogenesis of several human cancers. According to epidemiological evidences, the risk of susceptibility to breast cancer varies among different populations. This study was designed to determine the transcriptional level of HOTAIR in tumor cells of breast cancer pat...

متن کامل

Messenger RNA degradation is initiated at the 5′ end and follows sequence- and condition-dependent modes in chloroplasts

Using reporter gene constructs, consisting of the bacterial uidA (GUS) coding region flanked by the 5' and 3' regions of the Chlamydomonas rbcL and psaB genes, respectively, we studied the degradation of mRNAs in the chloroplast of Chlamydomonas reinhardtii in vivo. Extending the 5' terminus of transcripts of the reporter gene by more than 6 nucleotides triggered rapid degradation. Placing a po...

متن کامل

Chloroplast ribosomal proteins of Chlamydomonas synthesized in the cytoplasm are made as precursors

Polyadenylated RNA from Chlamydomonas was translated in a cell-free rabbit reticulocyte system that employed [35S]methionine. Antibodies made to four chloroplast ribosomal proteins synthesized in the cytoplasm and imported into the organelle were used for indirect immunoprecipitation of the labeled translation products, which were subsequently visualized on fluorographs of SDS gels. The cytopla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 2004